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Abstract. An analytical and numerical study of the scaling of Edwards random walks, 
defined as the zero-component limit ( n + O )  of an n-component go)+2/2 theory, is done in 
three dimensions. The Hausdorf dimension ( l / v )  and the resistance exponent ( x )  is 
calculated using renormalisation group methods in (4  - E )  dimensions. The numerical 
study is done by defining a Monte Carlo algorithm on the cubic lattice to generate ensembles 
of Edwards walks. 

1. Introduction 

The relationship between g,(c$*(’ theories ( 4  E R”) in the zero-component limit ( n  + 0) 
and theories of random walks has received considerable attention in recent years [ 1,2]. 
The use of random walks as a laboratory to study (especially the renormalisation of) 

theory and, in the more general context, phase transitions is consequently firmly 
established in the literature ( [ l ,  21 and references therein). The motivation for this 
paper is found in the general study of the scaling properties of random objects, and 
we shall limit ourselves here to a case study of the Edwards walk model and its 
resistance exponent, using in this case both a theoretical and numerical approach. 

The statistical fractal nature of random walks makes a study of the scaling properties 
of these objects very natural [3] and the methods used in this paper will centre about 
this fact. Perhaps the most natural critical exponent associated with fractal objects is 
the fractal dimension ( l / v )  and we shall consider it here also. Define 6 to be the 
square root of the mean square end-to-end length of an ensemble of random walks. 
Then 

ta N ”  

where N is the number of links in a walk (on a lattice) or the length of the walk. For 
Brownian random walks in any number of dimensions it is known that v = f ,  and for 
self-avoiding random walks ~ ~ 0 . 5 9 8  in three dimensions. In this paper we shall 
consider this exponent for the Edwards walk in  three dimensions. 

The electric resistance of random clusters is a well considered topic in the literature, 
especially in percolation theory [4, 51, but also for Brownian random walk clusters 
[6]. This paper is a generalisation of the methods in [6] to include the Edwards model, 
basing the method of investigation on the methods in [5-81. The resistance (or 
conductance) exponent ( x )  for random walks is defined by 

R K N“ (1.2) 
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where R is the average end-to-end resistance of a walk and where x = 1 in more than 
four dimensions, and where logarithmic corrections to (1.2) are expected in four 
dimensions [6] (it has been conjectured that the Edwards walk and the self-avoiding 
random walk have trivial limits in four dimensions [ 1, 21). The renormalisation group 
method can be applied to these models in (4  - E )  dimensions to facilitate an  E expansion 
for the critical exponents [6]. These methods will be applied to calculate the exponent 
x to first order in E ;  higher-order corrections will be published elsewhere. 

This paper is organised as follows. In § 2 we briefly discuss the calculation of U 
and introduce the calculation of x by the scheme of Wilson and Kogut [8]. A similar 
calculation was perfomed for Brownian walks in [6] and we relate the problem to that 
calculation in (3 3 when we derive a value for x. In 9 4 we define a Monte Carlo ( M C )  

algorithm to generate ensembles of Edwards walks. As a test, the Brownian walk is 
studied and  v and x are compared with known and published values. These checks 
should make us confident in the coding of the program. In 0 5 we calculate U and x 
for Edwards walks and  discuss the results. The error analysis is briefly considered and  
the implications of the results are studied. Our conclusions are presented in § 6 and  
our results are compared with the findings of related studies [6,9]. A few suggestions 
for further study are also made. 

2. Preliminary calculations 

In  this section we first calculate U for the Edwards model, then we lay the basis for 
the calculation of x in § 3. The defining field theory is a zero-component g,I&’I2 theory. 
Let & ( x )  ER”  be a field variable defined at the lattice site x E Zd. Define the Euclidean 
lattice action of the theory 

where yx.T, is the nearest-neighbour coupling matrix 

if / x  - x ’ I  = 1 
otherwise 

and ( r O ,  go) are the bare parameters of the theory. The ( n + O )  limit of this theory 
results in a random walk theory [2] with correlation functions [ l ]  

r 

where is the first component of 4, w is a random walk from x to y and 

i f k = O  
{:!‘!‘;;k- l ) ! ] O ( t )  d t  i f k z 1  

du, = (2.3) 

and kJ(w) is the number of times w visits s i t e jEZd .  Expressions (2.2) and  (2.3) define 
the so-called Edwards random walk (or self-suppressing random walk) [l-31 in a field 
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theoretical manner. Self-intersections of this random walk are suppressed b y  a potential 
( -$gor2) .  The larger the value of g,, the greater this suppression and the random walk 
becomes ‘more’ self-avoiding in character. This walk is believed to belong to the same 
equivalence class as the self-avoiding random walk [3], and the same values for the 
critical exponents are expected. It is our objective to show this explicitly. 

To calculate the Hausdorf dimension of the Edwards walks is now quite straightfor- 
ward; it is a simple application of the Wilson-Kogut renormalisation group theory in 
(4-  E )  dimensions [SI to (2.1): 

1/ v = 2 - E .  (2.4) 

In three dimensions Y = $. This is to be compared to v = 5 for the self-avoiding random 
walk and Y = $ f o r  Brownian walks [3]. The difference in the value between the Edwards 
model and the self-avoiding random walk model is due to the method employed here 
(for a more detailed analysis see [ l]) .  

Consider now an Edwards walk on a cubic lattice in d dimensions. This forms a 
network of links. If a resistor of unit resistance is assigned to each link a complicated 
network of resistors is formed because the random walk intersects itself on the lattice 
for finite values of go in (2.1). The relationship between the conductivity of a network 
and the zero-component ( s  -+ 0) limit of an s-component Potts model has been proposed 
and proven by Fortuin and  Kasteleyn [lo]. On a lattice .I the Hamiltonian may be 
written as [5] 

where P is the inverse temperature, J is the nearest-neighbour coupling and q are the 
links of A with endpoints q ,  and q2.  V ( x )  is an  s-state Potts vector constrained to 
point from the centre of an  ( s  - 1)-dimensional simplex to one of the s vertices, i.e. 

if V(x)ll V(x’) 
otherwise. 

V(x) a V(x‘) = 

Equation (2.6) defines the partition function of this system, and it may be reduced to 
a density matrix (see also [6]): 

It is then relatively easy to show that the resistance R ( x ,  y )  between two nodes (x, y )  
in A is related to the two-point correlation function by 

Equation (2.7) assigns a factor (1 + J ( s  - 1)  V ( q , )  V ( q 2 ) )  to each link of the lattice ’4. 
The resistance of a random walk is calculated by assigning such a factor to each of 
the links of the random walk. In (2.1) the links of the random walk are formed by 
the nearest-neighbour coupling matrix y indicating that in order to write down the 
resistance Hamiltonian, a factor such as that in (2 .7 )  must, according to the prescription 
of Fortuin and Kasteleyn, be supplied for each non-zero element of y. This factor 
will be replicated m times to facilitate an average over the walk, and the limit m --* 0 
will imply s + 0. For Edwards walks it is apparent that the correct theory to calculate 
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the resistance correlation (2.8) is 

(2.9) 

The resistance correlations of this theory are then ( 4 1 ( x ) V 1 ( x )  - 4 1 ( y )  V ' ( y ) )  where 
d 1  and V 1  are the first components of 4a and V".  Indeed, by exploting the methods 
of [2], it is possible to show that 

"1 

-4K 1 ( t 4 a ( x ) y , Y 4 u ( x ' )  n ( l + J ( s - l ) V " ( x ) -  V a ( x ' ) )  
~ , \ C Z * '  a = [  m = I  

1 
= l i m -  1 K ' "  ( l + J ( s - l ) V n ( q l ) .  V a ( q 2 ) ) ) ]  

m-0  ZO w Y - ,  

(2 .10)  

where w has /wl links, q E w is a link of w with endpoints q1 and q2 and ZO = Z 
where Z is the partition function of the theory. Each random walk is weighted by the 
Edwards weight, and we calculate the average resistance by expanding the correlation 
function in orders of 1/J.  Equation (2 .10)  explains the chosen form of (2 .9 )  explicitly. 
The density matrix (2.7) appears in replicated form to determine the resistance of each 
Edwards walk as in (2.8). 

The natural way is now to find an effective Hamiltonian in momentum space for 
(2.9) using the methods of [5, 11, 121. This is done by assuming that go is small enough 
for us to retain only terms to first order in it, and to fourth order in the fields. In (2.9) 
expand the product and  put 

(2.11) 

in the partition function and introduce h"'(a ,  a, i )  conjugate tof" ' (a ,  a, i ) .  Then the 
partition function is 

f ' " ( a ,  a, i )  = ( J ( S  - 1 ) ) '  ' Z~X~ [ , (X )  V ; ~ ( X )  . . . V ; I ( X )  

(2.12) 

where the lattice indices and  sums over the lattice indices have been suppressed, and 

The integral over the field 4u is done by expanding the sum over the Potts fields, 
and by expanding the fourth-orderterm in the exponential as [ 1 - Q g o ( Z ~ = 1 4 ~ ) 2 + O ( g ~ ) ]  
we integrate the resulting Gaussian integrals term by term. The sums over the Potts 



Resistance of the Edwards walk 151 

vectors can now be evaluated, and keeping only terms to fourth order in h and first 
order in go, the Hamiltonian in momentum space is found to be 

H e f i = ;  ( r , + p 2 ) h b " ( a ,  a, i )h"(a ,  a, i )  
m n  

r = O u = l  

+isl 2 f f ( Q ( t l ,  i , j ) ) ( Q ( t 2 ,  k ,  1 ) )  
r 2 = 0  o , h = l  a,/3 

hb:l'(a, a, i )h ; ; ' (a ,  a, j )hb: : ' (b ,  p, k)hL';:- , ,-P,(b,  p, I )  
PIPZP' 

m n rn 

xf 

xl P I P 2 P 3  

+h C C C ~ ( a , p ,  Y,  6;  i , j , k , I )  
r l , ~ ~ , ~ ~ , ~ J - O  u , h = l  a.P.y.6 

hb:l'(a, a, i)h,,';'(a, p, j)hL:'(b,  y, k)hY;: -p2-P ( b ,  6, I )  (2.13) 

where F is a coupling in the fourth-order Potts vectors as in [5] and 

(2.14) 

and where we have defined 

r,  = [ 1 -go( 1 + i n )  + O( gi)]z'KJ' + z 

g, = [ 1 -g0(2+ n )  +O(g;)]z4K2 

g2 = -[1- go(3 + n )  +O(g i ) ] z4K2 .  

(2.15) 

(2.16) 

(2.17) 

The coupling constants in (2.9) (g,,, K,  J )  have now been transformed into ( r , ,  g , ,  g2). 
The lattice on which the theory had been defined is now a cutoff on the momentum. 
The next step is now to perform a renormalisation group transformation on (2.13). 
This was done on a similar Hamiltonian by Dasgupta et a1 [ 51 and will not be repeated 
here. 

3. The resistance exponent 

In this section the resistance exponent is calculated from the renormalisation group 
recursion equations. Let g,,=O in the above. In this case we recover the Brownian 
random walk model studied by Banavar et a1 [6]. Clearly 

g,+ g, = 0 (3.1) 

and the recursion relations calculated to first order in (4 -  F )  dimensions using Wilson's 
method (see [7, 81 for details and [6] for a comparison) are 

si = bf[gl  - K d  In(b)(4g;+Zg,g2)l  (3.2) 

(3.3) 

where K a' = 2d-' 7rd ' T ( d / z )  and b is the length scaling parameter. These equations 
have four fixed points, which are now briefly considered. 

g i  = b ' [ g 2 -  K d  I n ( b ) ( 6 g l g , + 4 g ~ ) ]  
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Figure 1 is the phase diagram for this theory. The fixed point at (gT, g:) = ( 0 , O )  
is the Gaussian fixed point where g* is the value of the renormalised coupling constants. 
It is unstable and has A exponents ( A , ,  A, )  = (1,  1 ) .  The next fixed point is at ( 0 ,  E / 4 & ) .  
This is a saddle point with A exponents (i, -1). Another saddle point is found at 
( ~ / 2 & ,  - ~ / 2 & )  with A exponents (-2, 2). The only stable fixed point is found at 
( ~ / 4 & ,  0) with A exponents (-1, -:). 

The region marked D in figure 1 has g , + g 2 < 0  and the potential of the effective 
Hamiltonian is non-confining. The recursion relation for r, in the limits taken is seen 
to be 

r :=b2[ r , -  K d  In(b)(r,,g,+r,gJ]. (3.4) 
For Brownian random walks (3.1) holds and the critical behaviour of the system is 
selected by the saddle point at B in the figure. This implies that for their theory 
1/ v = 2 + ~ / 2  and a simple scaling argument gives 

. = a  ( 3 . 5 )  

/ g i b  lgzl (3.6) 

in  three dimensions. For Edwards random walks a different picture emerges. Equations 
(2.16) and (2 .17)  indicate that for sufficiently small g,, # 0 

and the typical renormalisation group theory trajectory would start at A in figure 1 
and gravitate to the stable fixed point at P. The resulting critical behaviour gives a 
critical value of 

x = l  (3.7) 
for the resistance exponent for Edwards random walks. This value is, up to this order, 
no different from the value expected for the self-avoiding random walk. 

D 

92 

Figure 1. The renormalisation group phase diagram for resistant random walks. The region 
marked D has a non-confining potential. 0 is the Gaussian fixed point 10, O ) ,  B the fixed 
point associated with resistant Brownian random walks [6] a n d  P the fixed point for 
resistant Edwards random walks. A typical renormalisation group trajectory for Brownian 
random walks would start dt C and  converge to B, while for Edwards walks it starts a t  A 
and  conierges to P. 
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4. Monte Carlo algorithm for Edwards walks 

The results of the previous sections suggest that the Hausdorf dimension of the Edwards 
random walk is $ and that the resistance exponent is 1 in three dimensions. In this 
section we shall develop a Monte Carlo ( M C )  algorithm [13] to generate Edwards 
walks and  test it by generating Brownian random walks. 

The goal is to generate random walks with fixed length and loose endpoints. The 
simulation of these kinds of objects by polymer scientists is well known [14] and 
Brownian walks (with fixed endpoints) were first generated in [15]. The same basic 
approach will be used here as in [14, 151: a local elementary MC transition process to 
generate new configurations of random walks will be defined. A link of a random 
walk is chosen at random, which together with its nearest neighbours are dissolved 
and  then reconstituted in an  unbiased manner. This process is illustrated for a specific 
example in figure 2. If the selected link is on the end of the walk, then it is flipped 
into any of the ( 2 d )  possible available positions, as in figure 3. It is obvious that this 
process connects configuration space. 

For Brownian random walks the transition probability P is 

P ( w +  w ’ )  = 1 (4.1) 
because all configurations have the same weight in the partition function. For Edwards 
walks, using (2.2) and following [14], define an associated action S ( w )  with each 
configuration w :  

r 

The transition probability is then 
if S( U’) > S (  w )  

otherwise. 
P( w + U ’ )  = (4.3) 

It is then clear that the condition of detailed balance 
P (  w + w ’ )  

P(w’+ w )  
= exp[ - ( S ( w ’ )  - S( U))]  (4.4) 

is satisfied and  we are assured of generating the correct distribution. This algorithm 
was coded into the ICL DAP, a 64 x 64 parallel processor, and one walk was stored 
per element giving an  ensemble of 4096 random walks at an) time. 

- - r--. c /--- (-” r/ .  

. .  r 
...A .._I . _ _ I  

l b l  l e i  l b i  le1 

! - . .  
r 

i f 1  
1 L.. - 

... / 
: f i  I C  I I C )  

Figure 2. The  elementary Monte Carlo process for 
the generation of Edwards random walks. The three 
links on the left-hand side are  dissolved and  recon- 
stituted into any of (a ) -Cf )  with equal bias. 

Figure 3. The elementary Monte Carlo process for 
a link at the end of a walk. The link is flipped into 
any of the positions (a ) -Cf ) .  
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Table 1. The correlation length .$ and  the resistance R of Brownian walks. The random 
walks have length N and  the initial 6 was measured before the ensemble was updated 
1000 times with the M C  algorithm to  give the final measurements. A least squares fitting 
to the initial a n d  final values of .$ gives Y = 0.496 and  Y = 0.497 respectively. The resistance 
exponent was calculated by a least squares fitting (x  = 0.7491 *0.0093). 

IO 
20 
30 
40 
49 
60 
70 
80 

2.8927 
4.1203 
5.0475 
5.8591 
6.4279 
7.1113 
7.7132 
8.2734 

2.9018 
4.1143 
5.0713 
5.8305 
6.4469 
7.1378 
7.7274 
8.2533 

6.085 i 0.041 
10.390 * 0.099 
14.21 10.13 
17.66 10 .16  
20.81 10 .14  
23.97 i 0 . 2 1  
26.92 10 .25  

To test the algorithm, an  ensemble of Brownian walks (already in equilibrium) was 
operated on with 1000 iterations on each. A new ensemble of Brownian walks is 
expected. Of these random walks, the correlation length (square root mean square 
end-to-end distance) i$ was measured before and after, and the electric resistance was 
measured after the application of the algorithm. From the result in table 1, it is apparent 
that the algorithm leaves an ensemble of Brownian walks unperturbed. To calculate 
critical exponents from these data corrections to scaling were taken into account by 
choosing the scaling laws 

6 = ( N  + k ) ”  (4.5) 

R L- ( N  + k)‘ ,  (4.6) 

These forms should be compared to those chosen by Beretti and Sokal [ 141. A numerical 
method was used to perform a least squares fitting of the data to (4.5) and (4.6) 
(Newton’s method). The results are 

These results are to be compared with the expected values of v = $ and x = $ [6] for a 
Brownian random walk in three dimensions. The error bar in x is two standard 
deviations. The above quantities were obtained by a least squares fitting to the data 
in table 1 and the error in x was calculated using standard procedures [16]. The 
resistance of each random walk was calculated by the exact solution of Kirchhoff’s 
laws at every node of the network by using a standard Gauss-Jordan elimination 
scheme. The measured quantities are averages over 4096 walks each. 

5. Numerical results 

In this section the critical exponents v and x are calculated for the Edwards random 
walk. The expected numerical values are now already known from the considerations 
in $0 2 and 3: v = 0.571 and x = 1. 
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The MC algorithm developed in the previous section was used to generate ensembles 
of Edwards walks. As an initial ensemble, Brownian walks of length N were chosen 
and operated upon to become Edwards walks. The study in $ 9  2 and 3 was based on 
perturbation theory, so a value of go in the perturbative region go=;  was chosen at 
first. The value of ro (4.2) was set equal to 1, and the scaling of the walks was studied 
by making N large. As an example in the non-perturbative region, the value of go 
was chosen to be 2. The results for values of N from N = 10 to N = 50 are displayed 
in tables 2 and 3. A plot of In R against In N suggests scaling (see figure 4) in three 
dimensions. The critical exponents were calculated by least squares fits to the data 
using the scaling forms (4.5) and (4.6) and the errors were once again calculated in 
the standard fashion [ 161. For go = the results are 
,$ = 0.8854( N - 1.202)0'551z0'012 R = 0.5842( N + 3.226)o'978=0'0'0 (5.1) 

where the fitting for 6 is over walks of length 15-50 and for R over walks to length 
10-50. For g o = 2  

over the same lengths as for go=;. The errors are two standard deviations. 
The results for v and x are in excellent agreement with the results of the perturbation 

theory calculation. The value of k in (4.5) and (4.6) proved to be small compared 
with N for all the least squares fittings done, so we are confident that the scaling forms 
are justified. 

Table 2. The correlation length # and  resistance R for Edwards random walks with go = $ 
and  r o =  1. A least squares fitting gives v=O.551*0.012 and  x=0.978*0.010. 

Length Iterations 5 R 

10 
15 
20 
25 
30 
34 
35 
40 
45 
50 

10 000 
15 000 
20 000 
25 000 
30 000 
35 000 
35 000 
80 000 
85 000 

120 000 

3.353 f 0.020 
3.812 * 0.024 
4.307 r 0.027 
5.2142 0.032 
5.723 r0.037 

6.159*0.039 
6.653 z 0.042 
7.065 * 0.045 
7.295 r 0.046 

- 

7.421 10.037 
9.71410.053 

12.555 * 0.069 
15.524 r 0.079 
18.023 * 0.093 
20.533 = 0.103 

2 3 . 6 3 9 ~ 0 . 1 1 7  
25.941 ~ 0 . 1 2 9  
27.816r0.142 

- 

Table 3. The correlation length 5 and  the resistance R of Edwards walks with go = 2 a n d  
ro = 1. These data  give v = 0.561 * 0.010 and  x = 0.983 rO.O1O. 

Length Iterations 5 R 

10 
15 
20 
2s 
30 
35 
40 
45 
50 

10 000 
15 000 
20 000 
25 000 
30 000 
35 000 
80 000 
85 000 
90 000 

3.619*0.020 
4.243 f 0.024 
4.81 1 * 0.028 
5.730 * 0.034 
6.349*0.038 
6.853 = 0.043 
7.296 * 0.044 
7.955 r 0.050 
8.316 f 0.051 

8.669 * 0.029 
12.214 * 0.044 

19.624 * 0.069 
23.663 * 0.080 
27.391 r0 .094  
30.689 * 0.105 
34.420 * 0.116 
37.664 * 0.127 

16.0301 0.055 
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.g0=2 0 

.g,=o5 

3 . 0  
p: 

2 . 0 1  
2!5 310 315 4'0 

In N 

Figure 4. Scaling for resistant Edwards walks. The resistance exponent x is calculated 
from the slopes of the curves by a least squares fitting. 

The measured quantities are averages over 4096 walks each. The program could 
perform up  to 30 000 iterations per hour and  ensembles of walks containing 50 links 
were relaxed for up  to 4 h  before any readings were taken to ensure the correct 
distribution of Edwards walks. I n  total, the calculation took 34 h to equilibrate the 
ensembles and  14 h to calculate the resistance of the ensembles. 

6. Conclusions 

The results that we obtained for the Brownian random walk in this paper should be 
compared with the results by Banavar et af [6]. Using a renormalisation group scheme, 
the value of x was found to be $ and numerically 0.73i0.005. This compares well 
with the value in this paper. Ball and Cates [9] determined the resistance of self- 
avoiding random walk clusters with all nearest-neighbour sites connected by unit 
resistors. They found, even in that model, the value of x to be 1. That result implies 
that the model described here shares the same characteristics as theirs: the random 
network contains so many bottlenecks that typically the end-to-end circuit will be 
disrupted by cutting a single link of the chain. 

For the Edwards model, we believe that the calculation by perturbative methods 
of the resistance exponent was successful, and this is supported by the results obtained 
numerically. Although the analysis here is perturbative, the structure of the renormali- 
sation flow diagram (figure 1) suggests that the results obtained are valid to all orders 
in the E expansion. 

The calculation of larger moments of the resistance correlation 

where R" is the nth moment of the average resistance over all configurations, both by 
numerical and analytic means (see [6]), is still outstanding for the Brownian as well 
as the Edwards model. Another outstanding result concerns the scaling of the shortest 
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arc length connecting the endpoints of the random walk cluster. In the light of the 
results obtained so far it would seem to scale with the same value of the critical 
exponent as the resistance (1).  
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